1.介绍
ggsci
提供一系列高质量的调色板,其灵感来自于科学期刊、数据可视化图书馆、科幻电影和电视节目中使用的颜色。.The color palettes in ggsci
are available as ggplot2
scales. For all the color palettes, the corresponding scales are named as:
scale_color_palname()
scale_fill_palname()
We also provided aliases, such as scale_colour_palname()
for scale_color_palname()
.
ggsci所有可用的调色板下表
Name | Scales | Palette Types | Palette Generator |
---|---|---|---|
NPG | scale_color_npg()
| "nrc" | pal_npg() |
AAAS | scale_color_aaas()
| "default" | pal_aaas() |
NEJM | scale_color_nejm()
| "default" | pal_nejm() |
Lancet | scale_color_lancet()
| "lanonc" | pal_lancet() |
JAMA | scale_color_jama()
| "default" | pal_jama() |
JCO | scale_color_jco() scale_fill_jco() | "default" | pal_jco() |
UCSCGB | scale_color_ucscgb() scale_fill_ucscgb() | "default" | pal_ucscgb() |
D3 | scale_color_d3() scale_fill_d3() | "category10"
| pal_d3() |
LocusZoom | scale_color_locuszoom() scale_fill_locuszoom() | "default" | pal_locuszoom() |
IGV | scale_color_igv() scale_fill_igv() | "default" "alternating" | pal_igv() |
UChicago | scale_color_uchicago()
| "default" "light" "dark" | pal_uchicago() |
Star Trek | scale_color_startrek()
| "uniform" | pal_startrek() |
Tron Legacy | scale_color_tron()
| "legacy" | pal_tron() |
Futurama | scale_color_futurama()
| "planetexpress" | pal_futurama() |
Rick and Morty | scale_color_rickandmorty()
| "schwifty" | pal_rickandmorty() |
The Simpsons | scale_color_simpsons()
| "springfield" | pal_simpsons() |
GSEA | scale_color_gsea()
| "default" | pal_gsea() |
Material Design | scale_color_material()
| "red" "pink" "purple" "deep-purple" "indigo" "blue" "light-blue" "cyan" "teal" "green" "light-green" "lime" "yellow" "amber" "orange" "deep-orange" "brown" "grey" "blue-grey" | pal_material() |
2 Discrete Color Palettes
We will use scatterplots with smooth curves, and bar plots to demonstrate the discrete color palettes in ggsci
.
library("ggsci")
library("ggplot2")
library("gridExtra")
data("diamonds")
p1 = ggplot(subset(diamonds, carat >= 2.2),
aes(x = table, y = price, colour = cut)) +
geom_point(alpha = 0.7) +
geom_smooth(method = "loess", alpha = 0.05, size = 1, span = 1) +
theme_bw()
p2 = ggplot(subset(diamonds, carat > 2.2 & depth > 55 & depth < 70),
aes(x = depth, fill = cut)) +
geom_histogram(colour = "black", binwidth = 1, position = "dodge") +
theme_bw()
2.1 NPG
The NPG palette is inspired by the plots in the journals published by
p1_npg = p1 + scale_color_npg()
p2_npg = p2 + scale_fill_npg()
grid.arrange(p1_npg, p2_npg, ncol = 2)
2.2 AAAS
The AAAS palette is inspired by the plots in the journals published by
p1_aaas = p1 + scale_color_aaas()
p2_aaas = p2 + scale_fill_aaas()
grid.arrange(p1_aaas, p2_aaas, ncol = 2)
2.3 NEJM
The NEJM palette is inspired by the plots in
p1_nejm = p1 + scale_color_nejm()
p2_nejm = p2 + scale_fill_nejm()
grid.arrange(p1_nejm, p2_nejm, ncol = 2)
2.4 Lancet
The Lancet palette is inspired by the plots in
p1_lancet = p1 + scale_color_lancet()
p2_lancet = p2 + scale_fill_lancet()
grid.arrange(p1_lancet, p2_lancet, ncol = 2)
2.5 JAMA
The JAMA palette is inspired by the plots in
p1_jama = p1 + scale_color_jama()
p2_jama = p2 + scale_fill_jama()
grid.arrange(p1_jama, p2_jama, ncol = 2)
2.6 JCO
The JCO palette is inspired by the the plots in
p1_jco = p1 + scale_color_jco()
p2_jco = p2 + scale_fill_jco()
grid.arrange(p1_jco, p2_jco, ncol = 2)
2.7 UCSCGB
The UCSCGB palette is from the colors used by UCSC Genome Browser for representing chromosomes. This palette has been intensively used in visualizations produced by Circos.
p1_ucscgb = p1 + scale_color_ucscgb()
p2_ucscgb = p2 + scale_fill_ucscgb()
grid.arrange(p1_ucscgb, p2_ucscgb, ncol = 2)
2.8 D3
The D3 palette is from the categorical colors used by D3.js (version 3.x and before). There are four palette types (category10
, category20
, category20b
, category20c
) available.
2.9 LocusZoom
The LocusZoom palette is based on the colors used by LocusZoom.
p1_locuszoom = p1 + scale_color_locuszoom()
p2_locuszoom = p2 + scale_fill_locuszoom()
grid.arrange(p1_locuszoom, p2_locuszoom, ncol = 2)
2.10 IGV
The IGV palette is from the colors used by Integrative Genomics Viewer for representing chromosomes. There are two palette types (default
, alternating
) available.
p1_igv_default = p1 + scale_color_igv()
p2_igv_default = p2 + scale_fill_igv()
grid.arrange(p1_igv_default, p2_igv_default, ncol = 2)
2.11 UChicago
The UChicago palette is based on the colors used by the default
, light
, dark
) available.
p1_uchicago = p1 + scale_color_uchicago()
p2_uchicago = p2 + scale_fill_uchicago()
grid.arrange(p1_uchicago, p2_uchicago, ncol = 2)
2.12 Star Trek
This palette is inspired by the (uniform) colors in
p1_startrek = p1 + scale_color_startrek()
p2_startrek = p2 + scale_fill_startrek()
grid.arrange(p1_startrek, p2_startrek, ncol = 2)
2.13 Tron Legacy
This palette is inspired by the colors used in
p1_tron = p1 + theme_dark() + theme(
panel.background = element_rect(fill = "#2D2D2D"),
legend.key = element_rect(fill = "#2D2D2D")) +
scale_color_tron()
p2_tron = p2 + theme_dark() + theme(
panel.background = element_rect(fill = "#2D2D2D")) +
scale_fill_tron()
grid.arrange(p1_tron, p2_tron, ncol = 2)
2.14 Futurama
This palette is inspired by the colors used in the TV show
p1_futurama = p1 + scale_color_futurama()
p2_futurama = p2 + scale_fill_futurama()
grid.arrange(p1_futurama, p2_futurama, ncol = 2)
3 Continuous Color Palettes
We will use a correlation matrix visualization (a special type of heatmap) to demonstrate the continuous color palettes in ggsci
.
library("reshape2")
data("mtcars")
cor = cor(unname(cbind(mtcars, mtcars, mtcars, mtcars)))
cor_melt = melt(cor)
p3 = ggplot(cor_melt,
aes(x = Var1, y = Var2, fill = value)) +
geom_tile(colour = "black", size = 0.3) +
theme_bw() +
theme(axis.title.x = element_blank(),
axis.title.y = element_blank())
3.1 GSEA
The GSEA palette (continuous) is inspired by the heatmaps generated by GSEA GenePattern.
p3_gsea = p3 + scale_fill_gsea()
p3_gsea_inv = p3 + scale_fill_gsea(reverse = TRUE)
grid.arrange(p3_gsea, p3_gsea_inv, ncol = 2)
3.2 Material Design
The
We generate a random matrix first:
library("reshape2")
set.seed(42)
k = 9
x = diag(k)
x[upper.tri(x)] = runif(sum(1:(k - 1)), 0, 1)
x_melt = melt(x)
p4 = ggplot(x_melt, aes(x = Var1, y = Var2, fill = value)) +
geom_tile(colour = "black", size = 0.3) +
scale_x_continuous(expand = c(0, 0)) +
scale_y_continuous(expand = c(0, 0)) +
theme_bw() + theme(
legend.position = "none", plot.background = element_blank(),
axis.line = element_blank(), axis.ticks = element_blank(),
axis.text.x = element_blank(), axis.text.y = element_blank(),
axis.title.x = element_blank(), axis.title.y = element_blank(),
panel.background = element_blank(), panel.border = element_blank(),
panel.grid.major = element_blank(), panel.grid.minor = element_blank())
Plot the matrix with the 19 material design color palettes:
grid.arrange(
p4 + scale_fill_material("red"), p4 + scale_fill_material("pink"),
p4 + scale_fill_material("purple"), p4 + scale_fill_material("deep-purple"),
p4 + scale_fill_material("indigo"), p4 + scale_fill_material("blue"),
p4 + scale_fill_material("light-blue"), p4 + scale_fill_material("cyan"),
p4 + scale_fill_material("teal"), p4 + scale_fill_material("green"),
p4 + scale_fill_material("light-green"), p4 + scale_fill_material("lime"),
p4 + scale_fill_material("yellow"), p4 + scale_fill_material("amber"),
p4 + scale_fill_material("orange"), p4 + scale_fill_material("deep-orange"),
p4 + scale_fill_material("brown"), p4 + scale_fill_material("grey"),
p4 + scale_fill_material("blue-grey"),
ncol = 6)
From the figure above, we can see that even though an identical matrix was visualized by all plots, some palettes are more preferrable than the others because our eyes are more sensitive to the changes of their saturation levels.
4 Non-ggplot2 Graphics
To apply the color palettes in ggsci
to other graphics systems (such as base graphics and lattice graphics), simply use the palette generator functions in the table above. For example:
## [1] "#E64B35B2" "#4DBBD5B2" "#00A087B2" "#3C5488B2" "#F39B7FB2" "#8491B4B2"
## [7] "#91D1C2B2" "#DC0000B2" "#7E6148B2"
You will be able to use the generated hex color codes for such graphics systems accordingly. The transparent level of the entire palette is easily adjustable via the argument "alpha"
in every generator or scale function.
5 Discussion
请注意,有些调色板可能不是某些目的的最佳选择,如色盲安全、复印安全或打印友好。如果你确实有这样的考虑,你可能想看看ColorBrewer和viridis这样的调色板。
如若转载,请注明出处:https://www.ouq.net/1837.html