ROC curve analysis-什么是ROC分析

What is a ROC curve?

A ROC curve is a plot of the true positive rate (Sensitivity) in function of the false positive rate (100-Specificity) for different cut-off points of a parameter. Each point on the ROC curve represents a sensitivity/specificity pair corresponding to a particular decision threshold. The Area Under the ROC curve (AUC) is a measure of how well a parameter can distinguish between two diagnostic groups (diseased/normal).

MedCalc creates a complete sensitivity/specificity report.

The ROC curve is a fundamental tool for diagnostic test evaluation.

Theory summary

The diagnostic performance of a test, or the accuracy of a test to discriminate diseased cases from normal cases is evaluated using Receiver Operating Characteristic (ROC) curve analysis (Metz, 1978; Zweig & Campbell, 1993). ROC curves can also be used to compare the diagnostic performance of two or more laboratory or diagnostic tests (Griner et al., 1981).

When you consider the results of a particular test in two populations, one population with a disease, the other population without the disease, you will rarely observe a perfect separation between the two groups. Indeed, the distribution of the test results will overlap, as shown in the following figure.

ROC-curve-overlapping-distributions

For every possible cut-off point or criterion value you select to discriminate between the two populations, there will be some cases with the disease correctly classified as positive (TP = True Positive fraction), but some cases with the disease will be classified negative (FN = False Negative fraction). On the other hand, some cases without the disease will be correctly classified as negative (TN = True Negative fraction), but some cases without the disease will be classified as positive (FP = False Positive fraction).

Schematic outcomes of a test

The different fractions (TP, FP, TN, FN) are represented in the following table.

Disease
Test Present n Absent n Total
Positive True Positive (TP) a False Positive (FP) c a + c
Negative False Negative (FN) b True Negative (TN) d b + d
Total a + b c + d

The following statistics can be defined:

Sensitivity
a
a + b
Specificity
d
c + d
Positive
Likelihood
Ratio
Sensitivity
1 – Specificity
Negative
Likelihood
Ratio
1 – Sensitivity
Specificity
Positive
Predictive
Value
a
a + c
Negative
Predictive
Value
d
b + d
  • Sensitivity: probability that a test result will be positive when the disease is present (true positive rate, expressed as a percentage).
    Sensitivity=aa+b
  • Specificity: probability that a test result will be negative when the disease is not present (true negative rate, expressed as a percentage).
    Specificity=dc+d
  • Positive likelihood ratio: ratio between the probability of a positive test result given the presence of the disease and the probability of a positive test result given the absence of the disease, i.e.
    +LR=True positive rateFalse positive rate=Sensitivity1Specificity
  • Negative likelihood ratio: ratio between the probability of a negative test result given the presence of the disease and the probability of a negative test result given the absence of the disease, i.e.
    LR=False negative rateTrue negative rate=1SensitivitySpecificity
  • Positive predictive value: probability that the disease is present when the test is positive (expressed as a percentage).
    PPV=aa+c
  • Negative predictive value: probability that the disease is not present when the test is negative (expressed as a percentage).
    NPV=db+d

Sensitivity and specificity versus criterion value

When you select a higher criterion value, the false positive fraction will decrease with increased specificity but on the other hand the true positive fraction and sensitivity will decrease:

ROC-curve-sensitivity-specificity

When you select a lower threshold value, then the true positive fraction and sensitivity will increase. On the other hand the false positive fraction will also increase, and therefore the true negative fraction and specificity will decrease.

The ROC curve

In a Receiver Operating Characteristic (ROC) curve the true positive rate (Sensitivity) is plotted in function of the false positive rate (100-Specificity) for different cut-off points. Each point on the ROC curve represents a sensitivity/specificity pair corresponding to a particular decision threshold. A test with perfect discrimination (no overlap in the two distributions) has a ROC curve that passes through the upper left corner (100% sensitivity, 100% specificity). Therefore the closer the ROC curve is to the upper left corner, the higher the overall accuracy of the test (Zweig & Campbell, 1993).

ROC-curve-example

如若转载,请注明出处:https://www.ouq.net/2340.html

(0)
打赏 微信打赏,为服务器增加50M流量 微信打赏,为服务器增加50M流量 支付宝打赏,为服务器增加50M流量 支付宝打赏,为服务器增加50M流量
上一篇 02/16/2023 22:24
下一篇 04/30/2023 23:26

相关推荐

  • 本地部署DeepSeek教程

    本地部署DeepSeek的意义:企业用户>个人用户 不联网:数据隐私可保证 自己部署:随时可用 部署私有知识库:专属AI模型 本地部署DeepSeek的缺陷 质量差:本地比官方服更差 部署复杂:有一定操作难度 场景较少:个人用户部署价…

    机器学习 02/04/2025
    134
  • DeepSeek 的使用教程

    一、什么是 DeepSeek? DeepSeek 是一款专注于高效信息处理与智能交互的人工智能工具,支持文本生成、数据分析、代码编写、知识问答等功能。其核心能力包括: 自然语言对话:回答复杂问题、提供建议。 多场景应用:编程辅助、内容创作、…

    02/04/2025
    319
  • NCBI SRA Toolkit介绍

    SRA Toolkit The Sequence Read Archive (SRA Toolkit) stores raw sequence data from “next-generation” sequenci…

    生物信息技术 01/05/2025
    137
  • CS229 机器学习课程复习材料-概率论

    CS229 机器学习课程复习材料-概率论 概率论复习和参考 概率论是对不确定性的研究。通过这门课,我们将依靠概率论中的概念来推导机器学习算法。这篇笔记试图涵盖适用于CS229的概率论基础。概率论的数学理论非常复杂,并且涉及到“分析”的一个分…

    12/23/2024
    146
  • 机器学习:数学基础知识

    数学基础知识 高等数学 1.导数定义: 导数和微分的概念  (1) 或者:  (2) 2.左右导数导数的几何意义和物理意义 函数在处的左、右导数分别定义为: 左导数: 右导数: 3.函数的可导性与连续性之间的关系 Th1: 函数在处可微在处…

    机器学习 12/23/2024
    169