人类视网膜结构与功能参数总结解读

  1. 视网膜尺寸
    • 视网膜的水平直径为32毫米,从眼球前极到后极,视网膜的面积大约为1094平方毫米。视网膜占眼球内腔的72%(基于眼球平均直径22毫米)。
  2. 视神经头/视神经盘尺寸
    • 视神经头的横向和纵向尺寸为1.86 × 1.75毫米。
  3. 角度与微米的距离
    • 1度视角相当于视网膜上288微米的距离(未经收缩修正)。
  4. 中央凹位置
    • 中央凹的位置距离视神经盘边缘约3.4毫米或11.8度。
  5. 黄斑横向直径
    • 黄斑中央有3毫米的浓色区域,周围1毫米宽的区域色素较少。
  6. 中央凹直径
    • 从中央凹边缘到边缘的直径为1.5毫米。
  7. 无棒细胞区的直径
    • 该区域直径在400-600微米之间。
  8. 中央凹的垂直厚度
    • 在中央凹的凹陷区,厚度为150微米,而在中央凹的边缘,厚度为300微米。
  9. Henle纤维长度
    • 从中央凹到神经节细胞轴突的长度在150-300微米之间。
  10. 视网膜垂直厚度
  • 视网膜的厚度在中央凹周围最大,逐渐变薄到眼球的赤道,最薄的地方是视网膜的边缘,约0.080毫米。
  1. 中央凹完全发育的年龄
  • 中央凹通常在4岁以后才会完全发育。
  1. 中央凹的锥体密度
  • 在中央凹的中心,锥体的密度为147,000个/平方毫米。
  1. 中央凹的锥体总数
  • 中央凹大约有200,000个锥体。
  1. 视网膜中锥体的总数
  • 视网膜上大约有640万个锥体。
  1. 视网膜中棒细胞的总数
  • 视网膜上大约有1.1亿到1.25亿个棒细胞。
  1. 棒细胞分布
  • 棒细胞的密度在距离中央凹约5毫米的位置达到最大,为160,000个/平方毫米。中央200微米内无棒细胞。
  1. 视神经轴突数量
  • 视神经中的轴突数量为564,776到1,140,030个。
  1. 中央凹的锥体与神经节细胞比例
  • 中央凹的锥体与神经节细胞的比例为1:2。
  1. 视网膜色素上皮细胞(RPE)与锥体的比例
  • 在中央凹,每个视网膜色素上皮细胞对应30个锥体。
  1. 视网膜色素上皮细胞与棒细胞的比例
  • 在视网膜的外周,每个RPE细胞对应22个棒细胞,而在棒细胞密度最大的位置,则是28个RPE细胞对应28个棒细胞。
  1. 视网膜的神经与胶质细胞类型
  • 视网膜由多种神经和胶质细胞类型组成,层次复杂。视网膜的光感受器分为锥体和棒体,其中大多数哺乳动物是二色视,具有两种敏感波长的锥体,而灵长类动物则是三色视。视网膜的第二级神经元是双极细胞和水平细胞,第三级神经元则是节细胞和无长突细胞。视网膜还包含了大量的胶质细胞,如Müller胶质细胞、星形胶质细胞和小胶质细胞。
  1. 视觉科学的有用单位
  • 该部分介绍了视觉科学中常用的单位,例如辐射强度单位、光度单位、光照单位等。

英文原文

1. Size of the retina(视网膜大小).

  • 32 mm from ora to ora along the horizontal meridian (Van Buren, 1963; Kolb, unpublished measurements). Area of the human retina is 1094 square mm (Bernstein, personal communication) calculated from the expectations that the average dimension of the human eye is 22 mm from anterior to posterior poles, and that 72% of the inside of the globe is retina (Michels et al., 1990).

2. Size of optic nerve head or disc(人视盘大小).

  • 1.86 x 1.75 mm
    opticn
  • Fig. 1. Topography and dimensions of optic nerve and fovea

3. Degrees and distance in micometers.

  • One degree of visual angle is equal to 288 µm on the retina without correction for shrinkage (Drasdo and Fowler (1974).

4. Foveal position.

  • 11.8o or or 3.4 mm temporal to the optic disk edge

5. Cross diameter of the macula.

  • 3 mm of intense pigmentation, surrounded by 1 mm wide zone of less pigmentation (Polyak, 1941).

6. Cross diameter of the central fovea from foveal rim to foveal rim.

  • 1.5 mm (Polyak, 1941)
  • 1.2-1.5 mm (Ahnelt and Kolb, unpublished data)

 

hufovea
Fig. 2a. Vertical section of the human fovea (59 K jpeg image)
monkfov-1
Fig. 2b. Vertical section of the monkey fovea
(78 K jpeg image)

7. Cross diameter of central rod free area.

  • 400-600 µm (Polyak, 1941)
  • 750 µm (Hendrickson and Youdelis, 1984)
  • 570 µm (Yamada, 1969)
  • 250 µm (Ahnelt et al., 1987)

8. Vertical thickness of the fovea from ILM to ELM.

  • In the foveal pit 150 µm (Yamada, 1969)
  • foveal rim 300 µm

9. Length of foveal axons (Henle fibers).

  • 150-300 µm (Ahnelt and Pflug, 1986).

10. Vertical thickness of the retina in different areas.

    • The vertical extent of the retina across the horizontal meridian at different eccentricities is shown in Figure 3. This is taken from data given by Sigelman and Ozanics (1982). The small black numbers are the originals from Sigelman and Ozanics which were measured in typical histological preparations where there is a great deal of shrinkage. The figures in red are those recently measured by Ahnelt (personal communication) in well fixed EM quality material where there is little or no shrinkage. Hence the latter numbers are larger. The numbers are in mm.
      RetinalThickness
    • Fig. 3. The retinal thickness shows greatest variations in the center. The retina is thinnest at the foveal floor (0.10, 0.150-0.200 mm) and thickest (0.23, 0.320 mm) at the foveal rim. Beyond the fovea the retina rapidly thins until the equator. At the ora serrata the retina is thinnest of all (0.080 mm).
11. Age when fovea is fully developed.
  • Not before 4 years of age (Hendrickson and Youdelis, 1984).

12. Highest density of cones at center of the fovea (counted in a 50 x 50 µm square).

  • 147,000/mm2 (Osterberg, 1935)
  • 96,900-281,000/mm2 mean161,900/mm2 (Curcio et al., 1987).
  • 178,000-238,000/mm2 (Ahnelt et al., 1987).

fovmoswv

Fig. 4. Hexagonal packing of cone mosaic in central human fovea. From Ahnelt at al., 1987.

13. Total number of cones in fovea.

  • Approximately 200,000. There are 17,500 cones/degree2. Rod free area is approximately 1o thus there are 17,500 cones in the central rod-free fovea.

14. Total number of cones in the retina.

  • 6,400,000 (Osterberg, 1935).

15. Total number of rods in the retina.

  • 110,000,000 to 125,000,000 (Osterberg, 1935).

16. Rod distribution.

  • Rods peak in density 18o or 5mm out from the center of the fovea in a ring around the fovea at 160,000 rods/mm2. (Fig. 5)
  • No rods in central 200 µm.
  • Average 80-100,000 rods/mm2
  • Rod acuity peak is at 5.2o or 1.5 mm from foveal center where there are 100,000 rods/mm2 (Mariani et al.,1984).

Ostergr

Fig. 5. Density plot of rods and cones on the horizontal meridian of the human retina (59 K jpeg image)

17. Number of axons in the optic nerve.

  • 564,776-1,140,030 (Bruesch and Arey, 1942)
  • 800,000-1,000,000 (Polyak, 1941)
  • 1,200,000 (Quigley et al., 1982; Balaszi et al., 1984).

18. Number of cones to ganglion cells in the fovea.

  • 1 cone to 2 ganglion cells out to about 2.2o (Schein, 1988).

19. Number of cones/retinal pigment epithelial cell (RPE).

  • 30 cones/RPE in fovea (Rapaport et al., 1995).

20. Number of rods/retinal epithelial cell (RPE).

  • In periphery 22 rods/RPE cell
  • In rod peak (4-5 mm from foveal center) 28 rods/RPE cell (Rapaport et al.,1995).

21. Number of neural and glial types in the retina .

  • The retina consists of many millions of cell types packed together in a tightly knit network spread over the surface of the back of the eye fundus as a thin film of tissue only 1/2 millimeter thick. The retina is like a three layered cake with three layers containing cell bodies of neurons and two filling layers where synapses betwen the neurons occur. There are two basic kinds of photoreceptors, rods and cones. The cones are further subdivided into two types (long and short wavelength sensitive) in the majority of mammals, i.e. most mamals are dichromats and have divariant color vision. In primates a third wavelength sensitive cone has developed closely related to the long wavelength cone type but a little more sensitive in the middle wavelength (i.e. green cone). Thus primates including man are trichromats and have trivariant color vision. Many reptiles, birds and fish have 4 or even 5 types of cone each sensitive to a slightly different peak wavelength. The second order neurons postsynaptic to the photorecepors in the first synaptic (filling layer) (outer plexiform layer) are bipolar cells and horizontal cells. There are 9 types of bipolar cell and 2 to 4 types of horizontal cell in species from mammals to fish. The third order neurons are amacrine cells and ganglion cells that synapse in the inner synaptic filling layer (inner plexiform layer). There are two types of interplexiform cell stretching between both plexiform layers, in most vertebrate retinas.There are approximately 22 types of amacrine cell and 20 types of ganglion cell in the typical mammalian retina. There may be 30 or more amacrine cell types in fish and reptilian retinas and 22 or so ganglion cell types. The increased number of third order neurons is due to the greater information processing taking place in the non mammalian retinas that in mammalian. All vertebrate retinas also contain large numbers of glial cells. The radial Muller cells strech from outer to inner limiting membranes and surround and isolate all neural cell types from each other except at synapses. Microglia arise in times of injury and are blood borne cell types. Astrocytes surround ganglion cell axons and inner retinal blood vessels.Figure 6 shows a drawing of the human retina close to the fovea where all the cell types that have been studied in detail are depicted in their intricate and marvellous network.
  • 视网膜由数百万种细胞组成,这些细胞紧密地聚集在一起,形成一个紧密相连的网络,覆盖眼底后部的表面,形成一层厚度仅为 1/2 毫米的薄薄的组织膜。视网膜就像一个三层蛋糕,三层包含神经元细胞体,两层填充层是神经元之间的突触发生的地方。有两种基本的光感受器:视杆细胞和视锥细胞。大多数哺乳动物的视锥细胞进一步细分为两种类型(长波长和短波长敏感),也就是说,大多数哺乳动物是二色视者,具有两种不同的颜色视觉。灵长类动物已经发展出一种对第三种波长敏感的视锥细胞,与长波长视锥细胞类型密切相关,但对中间波长(即绿色视锥细胞)更敏感。因此,包括人类在内的灵长类动物是三色视者,具有三种不同的颜色视觉。许多爬行动物、鸟类和鱼类都有 4 种甚至 5 种类型的视锥细胞,每种类型的视锥细胞对略有不同的峰值波长敏感。第一突触(填充层)(外丛状层)中光感受器突触后的二级神经元是双极细胞和水平细胞。从哺乳动物到鱼类,各种物种中都有 9 种双极细胞和 2 到 4 种水平细胞。第三级神经元是无长突细胞和神经节细胞,它们在内突触填充层(内丛状层)中突触。在大多数脊椎动物的视网膜中,两种丛状层之间都有两种丛状细胞。典型的哺乳动物视网膜中大约有 22 种无长突细胞和 20 种神经节细胞。鱼类和爬行动物的视网膜中可能有 30 种或更多的无长突细胞类型,以及 22 种左右的神经节细胞类型。第三级神经元数量的增加是由于非哺乳动物视网膜中的信息处理比哺乳动物中更多。所有脊椎动物的视网膜还含有大量的神经胶质细胞。放射状 Muller 细胞从外界膜延伸到内界膜,包围并隔离所有神经细胞类型(突触除外)。小胶质细胞在受伤时出现,是血液传播的细胞类型。星形胶质细胞包围神经节细胞轴突和视网膜内血管。图 6 显示了靠近中央凹的人类视网膜图,其中所有已详细研究的细胞类型都以复杂而奇妙的网络形式进行描述。

retinadiag

Fig. 6. Drawing of a vertical section through the human retina to show the organization of the different neurons and glial cells constituting it.

22. Useful Units in Vision Science (Wandell, 1995).

  • Radiometric units represent a physical measurement e.g., radiance is measured in watts sr -1 m-2.
  • Calorimetric units adjust radiometric units for visual wavelength sensitivity e.g., luminance is measured in candela per square meter, cd/m2.
  • Lux are units of illumination. Thus a light intensity of 1 candela produces an illumination of 1 lux at 1 meter.
    • Scotopic luminance units are proportional to the number of photons absorbed by rod photoreceptors to give a criterion psychophysical result.
    • Photopic luminance units are proportional to a weighted sum of the photons absorbed by L- and M-cones to give a criterion psychophysical result.
  • Typical ambient luminance levels (cd/m2):.
    • Starlight: 0.001
    • Moonlight: 0.1
    • Indoor lighting: 100
    • Sunlight: 10.000
    • Maximum intensity of common CRT monitors: 100
  • One Troland (Td) of retinal illumination is produced when an eye with a pupil size of 1 mm2 looks at a surface whose luminance is 1 cd/m2.
  • Lens focal length: f(meters); lens power= 1/f (diopters).

23. Image formation (Wandell, 1995).

      • The eyes are 6 cm apart and halfway down the head.
      • Visual angle of common objects (degrees, deg)
        • The sun or moon = 0.5 deg
        • Thumbnail (at arm’s length) = 1.5 deg
        • Fist (at arm’s length) = 8-10 deg
      • Visual field (measured from central fixation)
        • Monocular: 160 deg (w) x 175 deg (h)
        • Binocular: 200 deg (w) x 135 deg (h)
        • Region of binocular overlap: 120 deg (w) x 135 deg (h)
      • Range of pupil diameters: 1-8 mm.
      • Refractive indices.
        • Air: 1.000
        • Glass: 1.520
        • Water: 1.333
        • Cornea: 1.376
      • Optical power (diopters).
        • Cornea: 43
        • Lens (relaxed): 20
        • Whole eye: 60
        • Change in power due to accomodation: 8
      • Axial chromatic aberration over the visible spectrum: 2 diopters.
      • Visible spectrum: 370-730 nanometers (nm)
      • Peak wavelength sensitivity:
        • Scotopic: 507 nm
        • Photopic: 555 nm
      • Spectral equilibrium hues:
        • Blue: 475 nm
        • Green: 500 nm
        • Yellow: 575 nm
        • No spectral equilibrium: red

 

参考文献:

  1. Ahnelt PK, Pflug R. Telodendrial contacts between foveolar cone pedicles in the human retina. Experientia. 1986;42:298–300. [PubMed]
  2. Ahnelt PK, Kolb H, Pflug R. Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina. J Comp Neurol. 1987;255:18–34.[PubMed]
  3. Balazsi AG, Rootman J, Drance SM, Schulzer M, Douglas GR. The effect of age on the nerve fiber population of the human optic nerve. Am J Ophthalmol.1984;97:760–766. [PubMed]
  4. Bruesch SR, Arey LB. The number of myelinated and unmyelinated fibres in the optic nerve of vertebrates. J Comp Neurol. 1942;77:631.
  5. Curcio CA, Sloan KR, Packer O, Hendrickson AE, Kalina RE. Distribution of cones in human and monkey retina: individual variability and radial asymmetry.Science. 1987;236:579–582. [PubMed]
  6. Drasdo N, Fowler CW. Non-linear projection of the retinal image in a wide-angle schematic eye. Br J Ophthalmol. 1974;58:709–714. [PubMed] [Free Full text in PMC]
  7. Hageman GS, Johnson LV. The photoreceptor-retinal pigmented epithelial interface. In: Heckenlively JR, Arden GB, editors. Principles and practice of clinical electrophysiology of vision. St. Louis: Mosby Year Book; 1991.
  8. Hendrickson AE, Youdelis C. The morphological development of the human fovea. Ophthalmology. 1984;91:603–612. [PubMed]
  9. Mariani AP, Kolb H, Nelson R. Dopamine-containing amacrine cells of rhesus monkey retina parallel rods in spatial distribution. Brain Res. 1984;322:1–7.[PubMed]
  10. Michels RG, Wilkinson CP, Rice TA. (). Retinal detachment.The C.V. Mosby Company.p 17. 1990
  11. Osterberg G. Topography of the layer of rods and cones in the human retina. Acta Ophthalmol Suppl. 1935;6:1–103.
  12. Penkhus J. The ora serrata and its anatomical variations. M.S. Thesis. University of California, Los Angeles. 1965
  13. Polyak SL. The retina. Chicago: University of Chicago Press. 1941
  14. Quigley HA, Addicks EM, Green WR. Optic nerve damage inhuman glaucoma. III. Quantitative correlation of nerve fibre loss and visual defect in glaucoma ischemic neuropathy and toxic neuropathy. Arch Ophthalmol. 1982;100:135. [PubMed]
  15. Rapaport DH, Rakic P, Yasamura D, LaVail MM. Genesis of the retinal pigment epithelium in the macaque monkey. J Comp Neurol. 1995;363:359–376. [PubMed]
  16. Schein SJ. Anatomy of macaque fovea and spatial densities of neurons in foveal representation. J Comp Neurol. 1988;269:479–505. [PubMed]
  17. Sigelman J, Ozanics V. In: Jokobiec FA, editor. Ocular anatomy, embryology and teratology. Philadelphia: Harper and Rowe; 1982.
  18. Van Buren JM. The retinal ganglion cell layer. Springfield (IL): Charles C. Thomas. 1963
  19. Wandell BA. Foundations of vision. Sunderland (MA): Sinauer Associates, Inc. 1965
  20. Yamada E. Some structural features of the fovea central is in the human retina. Arch Ophthalmol. 1969;82:151–159. [PubMed]

 

如若转载,请注明出处:https://www.ouq.net/3422.html

(0)
打赏 微信打赏,为服务器增加50M流量 微信打赏,为服务器增加50M流量 支付宝打赏,为服务器增加50M流量 支付宝打赏,为服务器增加50M流量
上一篇 02/06/2025 23:33
下一篇 02/14/2025 22:40

相关推荐